2020 Consumer Confidence Report

Water System Name: Central Union Elementary (1600008) Report Date: 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Central Union Elementary a 15783 18TH AVENUE LEMOORE CA 93245 559-925-2619 para asistirlo en español.

Type of water source(s) in use: Ground water

Name & general location of source(s): Well 2010 is located at the rear (east end) of the facility.

Drinking Water Source Assessment information: <u>The water system is located on a 15-acre lot at 15783 18th Ave.</u>, approximately 300 feet east of 18th Avenue, south of the City of Lemoore in Kings County. An underground fuel storage tank located on the east side of the maintenance building was removed in 1985 and was found to have contaminated the surrounding soil and ground water. Central Union performed soil and ground water remediation; this was discontinued in September 1988 after contamination levels were determined to be non-detect. All septic tanks and leach lines at the school have been abandoned. The school currently pipes its wastewater to the Santa Rosa Indian Reservation located on Jersey Avenue east of 18th Avenue for treatment in their wastewater plant. There were three domestic wells adjacent to the current one. Wells B and C were destroyed in 2004; Well D was destroyed in 2005. Well E was installed in July 2010 and is currently serving as the main well to the school.

Time and place of regularly scheduled board meetings for public participation:

2Nd Monday each month at 15783 18th Ave, Lemoore, CA

For more information, contact: Tom Addington

Phone: 559-924-3405

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has

MaximumResidualDisinfectantLevelGoal(MRDLG):The level of a drinking water disinfectant	occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
below which there is no known or expected risk to	ND: not detectable at testing limit
health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.	ppm : parts per million or milligrams per liter (mg/L)
	ppb : parts per billion or micrograms per liter (µg/L)
Primary Drinking Water Standards (PDWS) : MCLs and MRDLs for contaminants that affect health along	ppt : parts per trillion or nanograms per liter (ng/L)
with their monitoring and reporting requirements, and	ppq : parts per quadrillion or picogram per liter (pg/L)
water treatment requirements.	pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA							
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria		
Total Coliform Bacteria (state Total Coliform Rule)	0	0	1 positive monthly sample	0	Naturally present in the environment		
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	0	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste		
<i>E. coli</i> (federal Revised Total Coliform Rule)	0	0	(a)	0	Human and animal fecal waste		
			<i>li-</i> positive or system fails to take repe	eat samples follo	owing <i>E. coli</i> -positive routine sample		

Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collecte d	90 th Percent Level Detect	Exceeding		PHO	No. of S G Requesti Samj	ng Lead	Typical Source of Contaminant
Lead (ug/l)	6-12-18	10	6	0	15		0.2		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	6-12-18	10	0.093	3 0	1.3	0.3	Not app	blicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Chemical or Constituent (and reporting units)	Sample Date	Level Detected		Range of Detections	MCL	CL PHG (MCLG)			al Source of minant
Sodium (ppm)	2016	140]	N/A0.012	none	1	none		esent in the water and is
Hardness (ppm)	2016	11		N/A	none	none		generally naturally occurring Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring	
TAble 4 – detection of co	ntaminants	with a <u>Pr</u> i	imar <u>y</u> D	rinking Water	r Standa	rd			
Chemical or Constituent (and reporting units)	Sample Date	Level Detected		Range of Detections	MCL [MRI]	м (PHG MCLG) MRDLG		al Source of minant
Radiologic Contaminants	5	•						<u> </u>	
Gross Alpha (pCi/L)	2018	6.55		4.53-8.56	15	()	Erosio	n of natural deposits.
Uranium (pCi/L)	2018	1.85		1.7-2.0	20	(0.43	Erosio	n of natural deposits.
Radium 228 (pCi/L)	2016	.22		0.295-0.37	5	5 n/a		Erosio	n of natural deposits
Inorganic Contaminants									
Arsenic (ppb)	2019	11		11	10	().004	runoff	on of natural deposits; f from orchards; glass ectronics production 5.
Fluoride (ppm)	2019	0.69		N/A	2.0]		water a strong	n of natural deposits; additive which promotes teeth; discharge from er and aluminum es.
TAble 5 – detection of co	ntaminants	with a Sec	condary	Drinking Wa	ter Stan	lard		1	
Chemical or Constituent (and reporting units)	Sample Date	Level Detected		Range of Detections	MCL		PHG MCLG)		al Source of minant
Chloride (ppm)	2016	9.2		N/A	500	500 N/z			f/leaching from natural ts; seawater influence.
Color (Units)	2016	75		N/A	15]	N/A	Natura materi	lly-occurring organic als.

Specific Conductance (µS/cm)	2020	530	N/A	1600	N/A	Substances that form ions when in water; seawater influence.
Odor Threshold (Units)	2016	1.5	N/A	3	N/A	Naturally-occurring organic material.
Total Dissolved Solids (TDS) (ppm)	2016	390	N/A	1000	N/A	Runoff/leaching from natural deposits.
Turbidity (Units)	2016	.88	N/A	5	N/A	Soil runoff.
Iron (ppb)	2016	120	N/A	300	N/A	Leaching from natural deposits; industrial wastes.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Central Union Elementary is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT,
or Monitoring and Reporting Requirement

VIOLATIO	VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language				
Arsenic MCL	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes	2020	Continue to monitor and evaluate treatment options	Some people who drink water containing arsenic in excess of the MCL over many years may experience skin damage or circulatory				

		system problems, and may have an increased risk of getting cancer

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES								
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Dates MCL [MRDL] PHG (MCLG) Typical Source of Contaminant								
E. coli	0	2020	0	(0)	Human and animal fecal waste			
Enterococci	0	2020	TT	n/a	Human and animal fecal waste			
Coliphage	0	2020	TT	n/a	Human and animal fecal waste			