2015 Consumer Confidence Report

Water System Name: Central Union Elementary School Report Date: 2015

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2015 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Two (2) wells.

Name & general location of source(s): Well A and Well E are located at the rear (east end) of the facility.

Drinking Water Source Assessment information: The water system is located on a 15-acre lot at 15783 18th Ave., approximately 300 feet east of 18th Avenue, south of the City of Lemoore in Kings County. An underground fuel storage tank located on the east side of the maintenance building was removed in 1985 and was found to have contaminated the surrounding soil and ground water. Central Union performed soil and ground water remediation; this was discontinued in September 1988 after contamination levels were determined to be non-detect. All septic tanks and leach lines at the school have been abandoned. The school currently pipes its wastewater to the Santa Rosa Indian Reservation located on Jersey Avenue east of 18th Avenue for treatment in their wastewater plant. There were three domestic wells adjacent to the current one. Wells B and C were destroyed in 2004; Well D was destroyed in 2005. Well E was installed in July 2010 and is currently serving as the main well to the school.

Time and place of regularly scheduled board meetings for public participation:

Regular meetings of the Board are usually held on the second Monday of each month at 7:30 pm in the District Presentation Center at 15783 18th Ave.

In Lemoore. Special meetings may be called when necessary, please check the appropriate agenda to confirm the times of the meetings.

For more information, contact: Andrea Affrunti Phone: (559) 924-3405

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation		MCL		MCLG	Typical Source of Bacteria	
Total Coliform Bacteria	(In a mo.) <u>6</u>	1		More than 1 sample in a month with a detection		0	Naturally present in the environment	
Fecal Coliform or <i>E. coli</i>	(In the year) $\underline{0}$	0		A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>		0	Human and animal fecal waste	
TABLE 2	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER							
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant	
Lead (ppb)	8/21/15	10	12.0	1	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	8/21/15	10	0.22	1	1.3	0.3	Internal corrosion of household plumbing systems; erosion of	

						natural deposits; leaching from wood preservatives
TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS						NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	5/20/15	140	130 - 150	none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	5/20/15	12	12 - 12	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

*Any violation of an MCL or A	L is asterisked	l. Additional info	rmation regarding t	he violation is	s provided later	r in this report.		
TABLE 4 – DET	ECTION O	F CONTAMIN	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant		
Arsenic (ppb)	2015	9.51*	5 - 12	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.		
Uranium (pCi/L)	2015	2.3	N/A	20	0.43	Erosion of natural deposits.		
Radium 228 (pCi/L)	2014	1	1	5	0.019	Erosion of natural deposits.		
Gross Alpha (pCi/L)	2015	9.94	8.28 – 11.6	15	0	Erosion of natural deposits.		
Fluoride (ppm)	2015	0.72	0.59 – 0.84	2.0	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.		
TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant		
Chloride (ppm)	2015	8.9	8.5 – 9.3	500	N/A	Runoff/leaching from natural deposits; seawater influence.		
Color (Units)	2015	75	50 – 100	15	N/A	Naturally-occurring organic materials.		
Specific Conductance (μS/cm)	2015	530	490 – 540	1600	N/A	Substances that form ions when in water; seawater influence.		
Odor Threshold (Units)	2015	1.25	1 – 1.5	3	N/A	Naturally-occurring organic material.		
Total Dissolved Solids (TDS) (ppm)	2015	355	330 – 380	1000	N/A	Runoff/leaching from natural deposits.		
Turbidity (Units)	2015	1.5	1.8 – 1.2	5	N/A	Soil runoff.		
Copper (ppb)	2015	21	9 – 33	1000	N/A	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.		
Iron (ppm)	2015	0.36	0.35 - 0.36	0.3	N/A	Leaching from natural deposits; industrial wastes.		
Manganese (ppm)	2015	0.027	0.024 - 0.03	50	N/A	Leaching from natural deposits.		

Zinc (ppm)	2015	0.027	ND – 0.053	5.0	N/A	Runoff/leaching from natural deposits; industrial wastes.		
TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level		Health Effects Language		
Alkalinity (ppm)	2015	270	250 – 290	N/A		No health effects language available.		
Bicarbonate (ppm)	2015	245	230 – 260	N/A		No health effects language available.		
Carbonate (ppm)	2015	22	20 – 24	N/A		No health effects language available.		
рН	2015	8.6	8.6 – 8.6	N/A		No health effects language available.		
Calcium (ppm)	2015	3.35	3.3 – 3.4	N/A		No health effects language available.		
Magnesium (ppm)	2015	0.79	0.74 - 0.83	N/A		No health effects language available.		

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Central Union Elementary is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
Arsenic	Erosion of natural	On going	Central Union Water	Some people who			
	deposits; runoff from		System is in the process	drink water containing			
	orchards; glass and		of collecting more data	arsenic in excess of the			
	electronics production		in order pursue options	MCL over many years			
	wastes.		to address arsenic	may experience skin			
			removal from the	damage or circulatory			
			primary drinking water	system problems, and			
			source.	may have an increased			
				risk of getting cancer.			